
Data Types, Variables,
and Arithmetic

David Greenstein

Monta Vista High School

int a = 5;
…
Card c = new Card();

Variables
• A variable is a program’s “named container” that holds

a value in real memory.

• More complex values, like objects, take up a range of
memory.

…
000FE
000FF 0000000101
00100
00101
00102
00103
00104
…

Memory
Program

Variables
In OOP, there are two different types of variables:

• Local variables

• Field variables

Local Variables
• A local variable is “bound” to a block of code.

• In Java, a block of code is surrounded by braces {} .

{
 int x = 3;
 String str = “11”;
 int z = x - 2;
}

Variables
local to
block {}

Field Variables
• A field variable is also called an instance variable.

• In Java, a class file (source code) define an object and
its fields.

public class MyClass {
 private int k;
 private String str;
 …
}

Fields of
an object

of data type
“MyClass”

Java Class File
(source code)

Constants
char: ’0’, ‘A’, ‘\n’
int: 3, 987, -55
double: 0.34, 3.4e-20
float: 4.5f
String: “Hello”, “1776”

String is special in Java.
It is the only class object

that has a literal equivalent.

Literal Constants

Symbolic Constants

Java code

private final int SIDE_LENGTH = 8;
private static final int BUFFER_SIZE = 1024;
public static final int PIXELS_PER_INCH = 6;

Java code

Symbolic constants
are initialized as final.

Why Symbolic Constants?
• Easy to change in one place and the change

permeates throughout the program.

• Easy to assign as a literal constant, but more
meaningful.

• More readable, self-documenting code.

• Removes “magic” numbers.

• Additional data type checking by the compiler.

private final int SIDE_LENGTH = 8;
private static final int BUFFER_SIZE = 1024;
public static final int PIXELS_PER_INCH = 6;

Variable Data Types
In OOP, every variable has a data type.  
There are two groups of data types:

• Primitive data types

• Object data types

In the Java language, there are 8 types:

byte, short, int, long, float, double, char, boolean

In the Java language, an object type is called a

class definition and is defined by the programmer

or a library.

APCS A Exam only uses int, double, char, boolean

Variable Scope
• The scope of a variable is the portions of source code

that the variable is “visible”.

• In block-structured code, like Java, the scope of a

variable is determined by the braces surrounding it.

• Variables can be “seen” by inner blocks, but cannot be

“seen” by outer blocks.
{
 int x = 3;
 int y = 11;
 int z = x - y;
 {
 double s = 3.44;
 float t = y;
 }
 s = z;
}

Declared variables can
be “seen” by outer and

inner blocks {} Declared
variables

can be “seen”
only by inner

block {}
This will cause

a compiler
error

Variable Scope (cont.)
• In Java, control statements have block structure and

follow scope rules.

if (isValid()){
 char a = ‘!’;
 int b = 303;
 String ss = null;
}
b += b;

Declared
variables

can be “seen”
only inside if

block {}This will cause
a compiler

error

Variable Scope (cont.)
• In Java, the for-loop variable follows scope rules.

for (int t = 0; t < 6; t++){
 some code here …
}
int s = t; variable “t”

can only be
“seen” inside

for-loop

This will cause
a compiler

error

int t;
for (t = 0; t < 6; t++){
 some code here …
}
int s = t;

If “t” is
declared outside

for-loop,
no compiler
error here

Variable Scope (cont.)

{
 String s = …
}
{
 char s = …
}
for (int s = 0; …) {

}

variable name “s”
can be declared in

different blocks
using different types

Variable names
• can be the same if they are declared in different blocks

• each declaration creates a new storage location that is
“seen” inside only that block

Variable Scope (cont.)

public void addOne(int a, char b, double c){

 some code here …

}

Variables “a”, “b”, and “c”
are local to addOne method.

These variables cannot
be “seen” by other methods.

Function (method) parameters are local to that function.

Variable Scope (cont.)
Class Fields
• are visible to all the functions (methods) of the object
public class Board {
 private int k;
 …
 public void boardMethod() {
 …
 k = 5;
 …
 }
}

Both refer to the
 same storage space

in memory.

Variable Scope (cont.)
Class Fields
• are visible to all the functions (methods) of the object
public class Board {
 private int k;
 …
 public void boardMethod() {
 …
 k = 5;
 …
 }
} public class Board {
 private int k;
 …
 public void boardMethod() {
 …
 int k = 5;
 …
 }
}

WARNING!!!
Same name
allowed but

2nd declaration
creates a 2nd

storage space.

Both refer to
 same storage space

in memory.

Variable Declarations

char c;
c = ‘X’;
int a = 5, b = 6;
JFrame frame = new JFrame();

str = “Hello World”;
String str;

Declared before used

• Variables must be declared before they are used.

• A declaration statement can include initialization.

• By default, Java initializes numbers to 0, booleans to
false, and objects to null. Other languages, like C++,
do not initialize the variable for you and you must
initialize it yourself.

Used before
declared.

Compiler error!

Declared and initialize

…
000FE
000FF 0000000101
00100
00101
00102
00103
00104
…

int a = 5;
…
Card c = new Card();

Assignment Operator “=“
• The assignment operator (=) performs a function.

• It takes the value computed by the expression on the
right and stores it into the named container on the left.
(evaluated right-to-left)

Memory
Program

int x, y, z;
x = y = z = 5;

z = -(3 * x % y) / 5 - 21;

Assignment Operator (cont)
• The assignment operator (=) can be used several times

in the same statement.

• The assignment is always evaluated right-to-left.

Right side is evaluated
before assignment is made.

• In Java, primitive numeric values on the right side of the
assignment statement must fit into the data type of the
variable (container) on the left side.

• If the data type on the left side of the assignment is a
larger container than the type on the right, then this is
called “promoting” a value.

int a = 5000; // works!
byte b = 200; // does not work;
 // byte range -128 to 127
short c = 32768; // does not work
 // short range -32768 to 32767

byte s = ‘x’; // works! Literal treated differently

Promoting a Data Type

• Most languages (like Java) allow some mixed data type
“promotions” when the data types are related in some
way. These must follow syntactic rules of the language.

• A data type “promotion” happens when the left side of
the assignment has a larger container than the right
side.

• If the left side has a smaller container than the right, the
compiler complains “possible loss of precision”.

• Exception: Assigning literals

Valid assignments (right to left):

double <- float <- long <- int <- char
double <- float <- long <- int <- short <- byte

Assigning Data Types

 byte a = ‘a’;
 short s = (int)5;

Arithmetic
• Java binary operators: +, -, *, /, %

• The precedence of operators and parentheses is
the same as in algebra.

• m % n means 
the remainder when m is divided by n  
(for example, 17 % 5 is 2 ; 2 % 8 is 2)

• % has the same rank as / and *

• Same-rank binary operators are performed in
order from left to right

• Unary operator “-“ has higher priority than * / %
3 * - 5 -> 3 * (-5) -> —15

Arithmetic
What is the order of operations?

3 + 2 % (4 / 5 + 9) * 7 + 1

Answer?

Arithmetic (cont.)
• The type of the result is determined by the 

types of the operands, not their values. This also
applies to intermediate results in expressions.

4 + 2 results in an int
4.e-2 * .0001 results in a double
3 / 6.1 results in a double

‘a’ + 4 results in an int
“a” + 4 results in a String

 (the last “+” is interpreted as String concatenate)

Compound Assignment Operators
More operators
• Compound assignment operators can be used for

simple arithmetic.

• Unary increment and decrement operators

 a += b; a = a + b;
 a -= b; a = a - b;
 a *= b; a = a * b;
 a /= b; a = a / b;
 a %= b; a = a % b;

 a++; a = a + 1;
 a--; a = a - 1;

AP Exam: Do not use these
inside larger expressions! n = arr[a++];

Compound Assignment Operators (cont)

 int a = 2;
 double b = 3;
 a += b;

 int a = 2;
 double b = 3;
 a = a + b;

Loss of
Precision

Compiler Error!

 int a = 2;
 double b = 3;
 a = (int)(a + b);

Equivalent
assignments

• Compound assignment operators implicitly cast their
result before assigning.

The cast is the data type of the operand on the left side of the
assignment.

No loss of
Precision!

Compared to binary operator “+”

Integer Arithmetic
• In most languages (Java included) integer

arithmetic truncates the decimal values.

• The assignment statement always computes the
right side first.

17 / 5 gives 3
 4 / 9 gives 0

double x = 3 / 5;

Integer division produces a 0 value.
The double data type on the left

does not change the result.

Integer Arithmetic (cont)
• Caution! There is no integer overflow detected by

the Java compiler or interpreter.

• It is your job to make sure the size of the integer
value does not exceed the storage capacity.

int 10^9 = 1000000000
int 10^10 = 1410065408
int 10^11 = 1215752192
int 10^12 = -727379968
int 10^13 = 1316134912

byte 10^2 = 100
byte 10^3 = -24
byte 10^4 = 16
byte 10^5 = -96
byte 10^6 = 64

Overflow Numbers
(garbage)

Casting
• You can force a literal or variable to another

compatible data type using casting.

• Casting must follow syntactic rules of
compatibility of the language.

int a = (int) 3.4;

ERROR! Loss of precisionint a = 3.4;

Literal double 3.4 is converted
to int 3 before assignment.

(“Down casting”)

int a = (int) “Hello”;

String s = (String) 5;
ERROR! Inconvertible type

Casting (cont)
• Casting can be useful when used correctly.

• Example of casting improperly. (forgot parentheses)

int rand = (int)(Math.random() * 10) + 1;

Random integer
from 1 to 10

Random double
from 0.0 to 9.9

int rand = (int)Math.random() * 10 + 1;

Always equals 1
Always equals 0

Casting (cont)
• Cast operators have higher precedence than

binary arithmetic operators (+, -, *, /, %)

• A cast operator is a unary operator.

int t = (int) 9.12 * 5;

Cast happens
before multiplication

long big = (int)(11 / 3.1) + - 2500000;

Cast unary
operator

Minus unary
operator

Operator Precedence

Example:

* / %

() parentheses

+ -

< <= > >= == !=

&&

||

 double a = (((double)b) + (((count * 9) / 23) + gif));

 double a = (double)b + count * 9 / 23 + gif;

Highest

Lowest

Easier to read

! + -(unary plus or minus) ++ —- (cast)

Questions?

